Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 93(1): 389-400, 2021 01.
Article in English | MEDLINE | ID: covidwho-1206780

ABSTRACT

Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the harm caused by coronaviruses to the world cannot be underestimated. Recently, a novel coronavirus (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) initially found to trigger human severe respiratory illness in Wuhan City of China in 2019, has infected more than six million people worldwide by 21 June 2020, and which has been recognized as a public health emergency of international concern as well. And the virus has spread to more than 200 countries around the world. However, the effective drug has not yet been officially licensed or approved to treat SARS-Cov-2 and SARS-Cov infection. NSP12-NSP7-NSP8 complex of SARS-CoV-2 or SARS-CoV, essential for viral replication and transcription, is generally regarded as a potential target to fight against the virus. According to the NSP12-NSP7-NSP8 complex (PDB ID: 7BW4) structure of SARS-CoV-2 and the NSP12-NSP7-NSP8 complex (PDB ID: 6NUR) structure of SARS-CoV, NSP12-NSP7 interface model, and NSP12-NSP8 interface model were established for virtual screening in the present study. Eight compounds (Nilotinib, Saquinavir, Tipranavir, Lonafarnib, Tegobuvir, Olysio, Filibuvir, and Cepharanthine) were selected for binding free energy calculations based on virtual screening and docking scores. All eight compounds can combine well with NSP12-NSP7-NSP8 in the crystal structure, providing drug candidates for the treatment and prevention of coronavirus disease 2019 and SARS.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Molecular Docking Simulation , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Drug Discovery/methods , Models, Molecular , Small Molecule Libraries
2.
Front Genet ; 11: 575012, 2020.
Article in English | MEDLINE | ID: covidwho-918134

ABSTRACT

Recently, a few animals have been frequently reported to have been diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether they are SARS-CoV-2 intermediate hosts is worthy of great attention. The interaction of SARS-CoV-2 spike protein and its acceptor protein ACE2 is an important issue in determining viral host range and cross-species infection, while the binding capacity of Spike protein to ACE2 of different species is unknown. Here, we used the atomic structure model of SARS-CoV-2 and human ACE2 to assess the receptor utilization capacity of ACE2s from 10 kinds of animals. Results show that chimpanzees, domestic cats and cattles are more susceptible to infection by SARS-CoV-2. Cats in particular, such as pet cats and stray cats, interact very closely with humans, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic. Furthermore, based on ACE2(cats)-SARS-CoV-2-RBD model, through high-throughput screening methods using a pool of 30,000 small molecules, eight compounds were selected for binding free energy calculations. All the eight compounds can effectively interfere with the binding of ACE2 and Spike protein, especially Nelfinavir, providing drug candidates for the treatment and prevention of SARS-CoV-2, suggesting further assessment of the anti-SARS-CoV-2 activity of these compounds in cell culture. Although we only reported the results of the simulation, and more laboratory and epidemiological investigation are required. Like cats are a risk factor, we can further detect SARS-CoV-2 according to the susceptibility of different animals, find the potential host of infection, and completely cut off the living space of the virus. Especially, cats could be a choice of animal model for screening antiviral drugs or vaccine candidates against SARS-CoV-2.

3.
J Pharm Anal ; 11(3): 272-277, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-745991

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious global health threat. This raises an urgent need for the development of effective drugs against the deadly disease. SARS-CoV-2 non-structural protein 14 (NSP14) carrying RNA cap guanine N7-methyltransferase and 3'-5' exoribonuclease activities could be a potential drug target for intervention. NSP14 of SARS-CoV-2 shares 98.7% of similarity with the one (PDB 5NFY) of acute respiratory syndrome (SARS) by ClustalW. Then, the SARS-CoV-2 NSP14 structures were modelled by Modeller 9.18 using SARS NSP14 (PDB 5NFY) as template for virtual screening. Based on the docking score from AutoDock Vina1.1.2, 18 small molecule drugs were selected for further evaluation. Based on the 5 ns MD simulation trajectory, binding free energy (ΔG) was calculated by MM/GBSA method. The calculated binding free energies of Saquinavir, Hypericin, Baicalein and Bromocriptine for the N-terminus of the homology model were -37.2711 ± 3.2160, -30.1746 ± 3.1914, -23.8953 ± 4.4800, and -34.1350 ± 4.3683 kcal/mol, respectively, while the calculated binding free energies were -60.2757 ± 4.7708, -30.9955 ± 2.9975, -46.3099 ± 3.5689, and -59.8104 ± 3.5389 kcal/mol, respectively, when binding to the C-terminus. Thus, the compounds including Saquinavir, Hypericin, Baicalein and Bromocriptine could bind to the N-terminus and C-terminus of the homology model of the SARS-CoV-2 NSP14, providing a candidate drug against SARS-CoV-2 for further study.

SELECTION OF CITATIONS
SEARCH DETAIL